Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed

Bryan Urquhart, Chi Wai Chow,

Matt Lave, Jan Kleissl May 18, 2011

Ground-Image Based Forecasting

- High time resolution coverage
 - Limited by computing power
- Granular spatial resolution
 - Multi-megapixel cameras
- Reasonable coverage
 - -~15 km² cloud field dependent
- Short time-horizon
 - 10 to 20 minutes

Resource Assessment Scales

	NWP (HRRR)	Satellite (GOES)	Sky Imager
Spatial Resolution	3 km horizontal	1 km ² at nadir	100 m ² ground projected
Spatial Coverage	Continental	Continental	15 km ²
Temporal	Hourly	15+ minutes (routine operations)	30 seconds (or faster)

UCSD Operational Forecasting

Cloud Decision

- Ratio of red content to blue content
 - Small values indicate clear sky
 - Values near unity indicate cloud

Cloud Mapping

- Cloud projection
 - Plane formed by cloud base
 - Ceilometer used for height

Cloud Shadow

- Shadow is projected to ground from binary cloudmap using solar angles
 - binary: clear or cloudy
- Sky condition mapped to ground ("shadowmap")
 - -10×10 m grid cells
 - Topography included (SRTM1)

topography not shown in shadowmap illustration

Sensor Network Layout

Irradiance Parameterization

 Global Horizontal Irradiance (GHI) [W/m²] parameterized as:

$$GHI = kt \cdot GHI_{csk}, \qquad kt = \begin{cases} 0.4 & cloudy \\ 1.0 & clear \end{cases}$$

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 Time [hh:mm]

Capturing ramps

Cloud Motion

Cross correlate image subsection within prescribed neighborhood

$$t = t_o - 30 sec.$$

$$t = t_o$$

Sky Condition Forecasting

- Binary cloudmap → binary comparison metric
 - Condition is clear or cloudy
- Sky imager derived condition determined from projected cloud shadows
- For pyranometer measurements:

$$clear \equiv kt > 0.7$$

 $cloudy \equiv kt \leq 0.7$, $kt = GHI/GHI_{csk}$

Four possible outcomes:

itcomes.	Sky Imager Forecast		
Measured	Clear	Cloudy	
Clear	$clr_m clr_f$	clr_mcld_f	
Cloudy	cld_mclr_f	cld_mcld_f	

match:

Positive

Negative

5-min Forecast Results

- a) All 4 days[†]
- b) October 4, 2009
- c) March 10, 2010

	Sky Imager Forecast		
Measured	Clear	Cloudy	
Clear	clr _m clr _f	clr_mcld_f	
Cloudy	cld_mclr_f	$cld_m cld_f$	

Acknowledgements

- DOE High PV Penetration Program
- Sanyo

Thank you for your time

visit us: solar.ucsd.edu

