Integrated Building Environmental Design

Beijing Parkview Green

10 May 2008

Design Objectives

- New paradigm of sustainable building in China
- Sustainable & environmentally-friendly design to the neighbourhood, the covered common spaces and the occupied areas in buildings
- Low natural resources consumption and energy efficient buildings
- Minimal social and environmental impact to surrounding building occupants
- Cost effective and low O&M cost green technologies
- Maximize use of hybrid ventilation
- Low environmental impact
- Good indoor environmental quality
- Safe, healthy and liveable space

Beijing Climatic Data – Outdoor Temperature & Humidity

- Annual Average Outdoor Temp. 11.7 °C
- Average Outdoor Temp. of the Hottest Month (July) 25.9 °C
- Average Outdoor Temp. of the Coldest Month (Jan) -4.8 °C
- When outside critical illuminance is 5,000 lx, available time of daylight is about 3,900 hours
- Maximum altitude in summer is 73.7°
- RH 40%-80%

Beijing Climatic Data - Wind

Summer prevailing wind: SW

Winter prevailing wind: N, NNW

- Located on the fringe of the loess belt
- Sandy and dusty weather originated in Inner Mongolia, Gansu and the Ningxia Hui Autonomous Region will affect the region in spring season.

	Outdoor Air Speed (m/s)		
	Annual	Winter	Summer
Average Wind Speed	2.5	2.8	1.9
Frequency of Occurrence	-	NNW (13%) N (13%)	SW (10%)

Beijing Wind Rose

Architectural Deign

Daylight Analysis

Fabric Construction of Microclimate Envelope

overall U-value = 1.6,
SC=0.4
U-value = 1.6, SC=0.5
U-value = 1.6, SC=0.85
U-value = 1.6, SC=0.3
U-value = 1.9, SC=0.3

ETFE Roof – Construction & Configuration

- All cushions are constructed from 2 or more layers of ETFE foil.
- Each foil layer is 100~250 microns thick.
- ETFE foils are highly elastic materials. Elongation at break point is approx. 400%.
- ETFE has a long-term memory, i.e. long-term elasticity.
- The cushion rise / dip for 15%~20% of span is allowed.
- Nominal inflation pressure 200Pa. (same as National Swimming Centre)

Cushion foil and structure able to handle both wind up-lift and wind pressure.

• Cushion internal pressure to be controlled by air pump.

3

Overview of Green Features

Green Features

- Hybrid ventilation and Night cooling in office
- Free cooling for air-side systems
- Skygraden
- Thermal break on facade interior (double skin facade)
- Daylighting
- Rainwater recycling
- AC condensate resued for cooling tower
- Evaporative cooling
- Heat Pipe
- Earth cooling in basement (fresh air pre-cool)
- Variable speed pump and ventilation fans
- Evaporative type water cooled air-conditioning

Technical Studies

- Hybrid ventilation
- Ventilated facade
- Ground source heat pump
- Photovoltaic system
- Heat pipe application
- · Radiant cooling / heating
- Heat recovery chillers
- Building thermal and pressure distribution
- Building solar and daylight access
- Building energy simulation
- Ecological enclosure thermal and ventilation study
- Energy efficient air distribution system
- Air-side and water-side free cooling
- Outdoor and indoor cooling tower schemes
- Chiller plant heat rejection study
- And.....

Hybrid Ventilation Design in Atrium Area

Microclimatic Envelope Design

Function of Microclimatic Envelope

Spring & Autumn Seasons

- Introduce natural ventilation enhance thermal comfort in Atrium and Sky-gardens
- Introduce natural ventilation reduce energy consumption for Office airconditioning systems
- Reduce energy consumption of air-conditioning system for other areas,
 I.e. Hotel and Retail by reduction of solar heat gain

Summer Season

- Reduce energy consumption of air-conditioning system for all areas, I.e.
 Office, Hotel and Retail by reduction of solar heat gain
- Introduce natural ventilation Increase the air movement inside the atrium and thermal comfort

Winter Season

- Isolation from freezing environment Increase Atrium air temperature and thermal comfort
- Reduce energy consumption of heating system by reduction of fabric heat loss

Microclimatic Envelope Design

Spring & Autumn Seasons

Natural Ventilation – windy condition

Natural Ventilation – windless condition

Microclimatic Envelope Design

Summer Season

Microclimatic Envelope Design

Winter Season

Energy Saving for HVAC System

Function of microclimate envelope – reduce system energy consumption

	System cooling / heating load (without microclimate envelope)	System cooling / heating load (with microclimate envelope)	Total AC energy saving
Spring &	Office = 10300 MWh	Office = 1700 MWh	63%
Autumn	Hotel = 530 MWh	Hotel = 470 MWh	(cooling)
	Retail = 4100 MWh	Retail = 3300 MWh	
Summer	Office = 9100 MWh	Office = 8000 MWh	13%
	Hotel = 540 MWh	Hotel = 470 MWh	(cooling/ heating)
	Retail = 3300 MWh	Retail = 2700 MWh	neating)
Winter	Office = 4000 MWh	Office = 800 MWh	80%
	Hotel = 340 MWh	Hotel = 70 MWh	(heating)
	Retail = 1400 MWh	Retail = 280 MWh	

Atrium Comfort Improvement

Summer – SL2 Atrium Environment

Optional thermal environment improvement system			
Exhaust air reuse	Utilize retail exhaust		
	Exhaust air flowrate 32 m ³ /s		
	SA temp 25.0°C		
Atrium air supply system	Utilize office exhaust / atrium cooling unit		
	SA flowrate 70 m ³ /s		
	SA temp 25.0°C		
Radiant cooling	Less effective than supply air system, require chilled water supply, pipeworks cannot be laid under EVA		
Pool evaporative cooling	Less effective than supply air system, require large amount of make-up water, condensation at retail shop glass surface adjacent to the pool		

Innovative HVAC Design

Load Estimation

- Dynamic thermal analysis
- 3D model separated in different zones
- Heat transfer between building and the surroundings
- Consider solar heat gain, fabric gain, convective heat gain, internal load

Hybrid Ventilation System in Office

Chilled Ceiling & Underfloor Air Supply System in Office

Hybrid Ventilation Modes

Hybrid ventilation system will be adopted on office floors. Hybrid ventilation system consists of 3 individual operating modes:

- Air Conditioning Mode
- Natural Ventilation Mode
- Free Cooling Mode
- Provide pleasant internal temperature level
- Protect against summer overheating, reflection effects and draughts
- Eliminating "cold wall" effects and ingress of cold breeze in winter
- Reduce energy use for heating and cooling
- Encourage use of semi-outdoor space

Key Issues in Hybrid Ventilation

- Operational strategy for the microclimate envelope and all buildings in different seasons
- Air circulation and temperature distribution within the microclimate envelope
- Air circulation for hybrid ventilated space office and circulation area
- Materials selection for the included roof of microclimate envelope
- Materials selection for different elevation of microclimate envelope and buildings
- Vent (intake & exhaust) openings design on microclimate envelope
- Air intake locations (orientation & level) and adjacent usages
- Control interface with HVAC systems
- Performance monitoring

Office Floors 办公室

Underfloor AC system

Typical office (High block & Low block L3-7)

Underfloor fan box c/w hot water supply

Underfloor fan box size 600x600

Office Floors 办公室

Chilled ceiling system

Typical office (12x12m2)

Hotel – HVAC Provision

Hotel Lobby - Underfloor AC System

6

Other Building Services Design Considerations

Fire Engineering – Evacuation Modelling

Time: 0:00 People in model: 30716

Construction Progress

Site Construction Progress

ARUP

ARUP

Interior Fitting-out Mock Up

ARUP

