

Solara: A Case Study in Zero Net Energy Design for Affordable Housing

Design, Construction, and Operational Lessons Learned from a

California Energy Commission Zero Energy New Homes Project

Jim Meacham, P.E. February 4, 2009

Solara Intro

- 56 unit, 2-story affordable apartments
- Poway, CA (1883 HDD, 1022 CDD)
- Developed by Community
 HousingWorks in conjunction with
 Global Green USA

Solara ZENH Project Goals

- 1. Exceed 2005 Title 24 energy code by at least 25%
- 2. Reduce electricity cost by at least 70%
- 3. Have a coincident peak demand of less than 1kW
- 4. Increase the first cost per unit by less than \$5,000

Design and Modeling

- Designed to be 33-37% better than 2001
 Title 24 energy code
 - 12-15% above 2005 Title 24
 - High performance windows, overhangs, high efficiency HVAC, centralized hydronic DHW and heating, radiant barrier
- Modeled using EnergyPro (CEC approved compliance software)
 - Does not calculate lighting, plug, or appliance loads
 - Observed to significantly underestimate cooling demand

From Design to Construction: Lessons Learned

- HVAC oversized
- Leaky ducts
- Hydronic heating controls good in modeling but not in practice
- Tradeoff between PV and solar thermal competition for roof space

Performance Monitoring and Verification

- 50% of Solara units monitored for power consumption
 - Dent ElitePro power meters
 - 15 minute data
- 100% of PV systems monitored at Solara
 - Fronius IG Access add-on
 - 15 minute data
- 4 "baseline" units monitored nearby
 - Same developer and builder

Monitoring period: Aug '07 – Aug '08

M&V: Lessons Learned

- Off the shelf monitoring equipment not suited for long term data collection
 - Robust hardware
 - Poor software for communications and data collection
- Packaged PV monitoring solution from inverter manufacturer – extremely unreliable

More R&D needed for commercialized, highly reliable M&V equipment

Comparison of Solara and Baseline Units

- Utility bills: included in rent at Solara, paid by tenant at Hillside
- Cooking appliances: electric at Solara, gas at Hillside
- Heating: Centralized hydronic at Solara, furnaces at Hillside
- DHW: Centralized tankless at Solara, individual tankless at Hillside

Performance Results: ZENH Goals

1. Per	2a. Red	2b. Red <i>SF</i>)	3. A Coii (kW	4. A Coii (kW	

		Solara Performance			
	ZENH Goal	Modeled	Monitored Performance		
1. Title 24 Energy Performance Above Code	25%	12-15%	NA		
2a. Electricity Cost Reduction (<i>Per Unit</i>)	70%	85%	68%		
2b. Electricity Cost Reduction (<i>Normalized per</i> <i>SF</i>)	70%	8370	62%		
3. Average per Unit CA ISO Coincident Peak Demand (kW)	1kW	NA	0.58 kW		
4. Average per Unit SDG&E Coincident Peak Demand (kW)	1kW	NA	0.51kW		
			CTC		

Performance Results: Electricity Consumption

	Solara	(kWh)	Hillside	Reduction from Baseline		
	Net (With PV)	Gross (Without PV)	(Baseline) (kWh)	Net (With PV)	Gross (Without PV)	
Average Consumption - per Unit	480.7	3709.6	3693.7	87%	0%	
Average EUI - per 1000 SF	477.7	4097.1	3655.4	87%	-12%	
Average EUI - per BR	228.1	1760.5	1458.0	84%	-21%	

- Energy efficiency measures observed to have little or no impact on gross consumption
- Utility billing structure and electric appliances have a significant impact

Performance Results: Electricity Cost

		Sola	ara	Hillside	Reduction from Baseline		
		Net (With PV)	Gross (Without PV)	(Baseline)	Net (With PV)	Gross (Without PV)	
	Average Utility Cost – per Unit	\$ 125.55	\$ 546.56	\$390.70	68%	-40%	
N - N	Average ECI – per 1000 SF	\$ 145.03	\$ 631.39	\$383.77	62%	-65%	
	Average ECI – per BR	\$ 59.58	\$ 259.38	\$151.94	61%	-71%	

- Minimum daily charge has a significant impact on total utility cost at Solara
- Billing arrangements important: Solara not eligible for low-income rates because bills included in rent

Performance Results: Peak Demand

Performance Results: Natural Gas

- Solara heating system design: efficient during heating season and inefficient during cooling season
- Solara cost very high due to lack on low income rates and incorrect rate structure

Performance Results: Site Energy

			Total EU	II (kBtu per 1	1000 SF)			tal Averag \$ per 1000	
	Month	Solara Net	Solara Gross	Hillside	Net Reduction	Gross Reduction	Solara Net	Hillside	Reduction
	Jan	2843.3	3477.9	4956.7	43%	30%	\$53.3	\$75.4	29%
	Feb	2839.6	3761.4	3795.0	25%	1%	\$55.2	\$56.6	3%
	Mar	1934.3	3148.5	2772.4	30%	-14%	\$43.9	\$45.0	2%
77	Apr	1713.1	2987.8	2348.1	27%	-27%	\$42.6	\$43.7	3%
	May	1520.8	2922.8	2159.4	30%	-35%	\$41.1	\$45.3	9%
	Jun	1639.6	3136.2	1899.5	14%	-65%	\$44.3	\$52.9	16%
	Jul	1498.4	2905.2	2335.4	36%	-24%	\$42.1	\$57.8	27%
	Total	13989.2	22339.7	20266.6	31%	-10%	\$322.4	\$376.9	14%
Marie Pro		_							

- Net energy use performance much lower than electricity performance due to gas usage
- Gas use and rate structure differences have a significant impact on overall cost performance

Performance Results: Comparison with Modeled Projections

Category	Modeled	Observed	Observed Performance vs. Modeled
Gross Electricity Consumption (kWh)	3612.4	3709.6	3%
PV Production (per kWDC installed) (kWh)	1351.0	1477.3	9%
Net Electricity Consumption (kWh)	675.9	480.7	-29%
Electricity Cost (\$/apartment)	\$132.20	\$125.55	-5%
Natural Gas Consumption (therms/apt)	80.0	211.9	165%

- Post processing resulted in very accurate projections
- PV production higher than PV Watts (NREL) estimate
- Gas consumption significantly underestimated

Modeling – lessons learned

- Significant post processing needed to go from model outputs to accurate projections
 - 50% increase in cooling energy
 - Addition of lighting, appliance, and plug loads based on Building America
 Benchmark
- Modeling software significantly underestimates heating hot water use – lack of controls detail

Lesson Learned: Occupant Behavior

Average electricity use

per bedroom – 1862 kWh

Low range – 669 kWh

High range – 4557 kWh

Std Dev – 839 kWh

- Occupant behavior varies wildly
- Feedback mechanisms may be necessary to costeffectively achieve zero net energy
- More research needed

- EE + PV reduced electricity consumption by 87%
- Net exporter during Utility peak period during critical summer months
- Energy modeling tools need postprocessing for zero energy design
- Focus on electricity may shift demand to other fuels – total site energy reduced by 31%
- Occupant behavior is critical to achieving zero net

Jim Meacham, P.E.

<u>imeacham@ctgenergetics.com</u>

949.428.6274